本文共 1638 字,大约阅读时间需要 5 分钟。
中文题~~
正如题解所述,一步一步分析即可.
计算和式时,分情况讨论即可.
#includeusing namespace std;typedef long long ll;const int M = (int)1e5;const ll mod = (ll)1e9 + 7;int l[M + 5];int r[M + 5];ll quick(ll a, int b){ ll sum = 1; while(b) { if(b & 1) sum = sum * a % mod; a = a * a % mod; b >>= 1; } return sum;}ll inv(ll n){ return quick(n, mod - 2);}int main(){ int n; scanf("%d", &n); ll mul = 1; for(int i = 1; i <= n; ++i) scanf("%d %d", &l[i], &r[i]), mul = mul * (r[i] - l[i] + 1) % mod; ll ans = mul; for(int i = 2; i <= n; ++i) { ll sum = 0; if(l[i - 1] < l[i] && l[i] < r[i - 1] && r[i - 1] < r[i]) sum = 1ll * (r[i - 1] - l[i]) * (r[i - 1] - l[i] + 1) / 2 % mod; if(l[i - 1] <= l[i] && l[i] <= r[i] && r[i] <= r[i - 1]) sum = 1ll * (r[i] - l[i] + 1) * (2 * r[i - 1] - l[i] - r[i]) / 2 % mod; if(l[i] < l[i - 1] && l[i - 1] <= r[i] && r[i] < r[i - 1]) sum = (1ll * (l[i - 1] - l[i]) * (r[i - 1] - l[i - 1] + 1) % mod + 1ll * (r[i] - l[i - 1] + 1) * (2 * r[i - 1] - l[i - 1] - r[i]) / 2 % mod) % mod; if(l[i] <= r[i] && r[i] < l[i - 1] && l[i - 1] <= r[i - 1]) sum = 1ll * (r[i - 1] - l[i - 1] + 1) * (r[i] - l[i] + 1) % mod; if(l[i] < l[i - 1] && l[i - 1] <= r[i - 1] && r[i - 1] < r[i]) sum = (1ll * (l[i - 1] - l[i]) * (r[i - 1] - l[i - 1] + 1) % mod + 1ll * (r[i - 1] - l[i - 1]) * (r[i - 1] - l[i - 1] + 1) / 2 % mod) % mod; sum = sum * mul % mod * inv(r[i] - l[i] + 1) % mod * inv(r[i - 1] - l[i - 1] + 1) % mod; ans = (ans + sum) % mod; } printf("%lld\n", ans); return 0;}
转载地址:http://pkht.baihongyu.com/